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Abstract 

Background  Predicting cancer incidence has long been a challenge for clinicians and researchers. Accurate predic-
tions are essential for health planning to ensure adequate resources for diagnosis, treatment, and rehabilitation. Cur-
rent prediction methods rely on historical data, assuming persistent patterns of cancer incidence.

Method  In this study, the Google Trends tool was used to obtain the relative search volume index (RSVI) for the topic 
“cancer” each year from 2017 to 2023 in the United States and worldwide. The proposed model incorporated actual 
cancer incidence rates and yearly changes in RSVI.

Results  The model was applied to predict the rates of new cancer cases in fifty American states over four consecu-
tive years (2017, 2018, 2019, 2020). The selection of years was restricted with data availability. In most states, the per-
centage error did not exceed 6%. The high degree of similarity between the actual and predicted cancer incidence 
rates was notable. Similar results were obtained when predicting cancer incidence rates in the countries studied.

Conclusion  The model has successfully provided accurate short-term predictions of cancer incidence rates across all 
50 American states and 54 countries since 2017.
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Introduction
Cancer is a worldwide leading cause of death, which 
accounts for about 10 million deaths annually, or about 
one in every six deaths, according to the World Health 
Organization (WHO) [1]. The reported cancer inci-
dence rates are 2 to 4 years late behind the current year. 

The cause for this delay is that data collection, compila-
tion, quality control, and dissemination are not instant 
processes [2]. Predicting cancer incidence is a crucial 
step in estimating the cancer burden, which is essen-
tial for health planning and ensuring that healthcare 
organizations allocate sufficient resources for diagnosis, 
treatment, and rehabilitation [3]. Historically, different 
methods hava been used for making cancer incidence 
predictions [4–6]. Age-period-cohort (APC) models 
have been the most widely used approach in the last four 
decades to forecast the incidence and the mortality of 
cancer. In the APC model, the rate of cancer incidence 
is described as a sum of (non-linear) age, period, and 
cohort-effects where the period indicates the date of fol-
low-up, and the cohort is indicated by the date of birth. 
However, these three variables (age, period, and cohort) 
are linearly co-related according to the equation; Cohort 
= Period – Age. Accordingly, the effect of any of these 
variables can be deduced once the other two variables are 
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given. This exact linear dependency among age, period, 
and cohort leads to a problem known as the “Identifi-
cation problem”. For this reason, The APC model tends 
to overestimate the rate of cancer cases. Attempts have 
been made to overcome this problem, but the model is 
still complicated and the results are not very reliable [3].

Many years ago, Google Inc. introduced Google Trends 
as a brand-new, open-access, cost-free application [7]. 
The information shown in Google Trends is classi-
fied according to the popularity of particular subjects 
at particular times and locations [8]. The user-friendly 
interface in Google Trends allows comparing up to five 
distinct topics at once, as well as the search trends in 
other nations or areas (Video S1). The results are shown 
as a chart that illustrates the interest in the query over 
time [7]. In this graph, the y-axis is the relative search 
volume (RSV) of the query, and the x-axis represents the 
time period according to user preference (from 2004 to 
the present day) [7]. When compared to other subjects 
that were searched for at the given time and place, RSV 
shows the relative popularity of the selected topic rather 
than its absolute popularity [7]. When compared to other 
subjects searched within that time period, a topic with an 
RSV score of 100 is at the pinnacle of popularity, while 
one with a score of 55 indicates that it was only 55% as 
popular as the most searched for topic at the same time 
and in the same place [9]. Google Trends also displays 
regional or country-specific colored maps that dem-
onstrate interest in particular topics on a global scale. 
Google Trends is widely utilized in a variety of indus-
tries, including banking [10], tourism [11], business [12], 
fashion [13], recreation [14], the oil industry [15], and 
healthcare [16]. For instance, Google Trends has been 
used to accurately estimate the direction of stock markets 

[17], movie engagement [18], fashion consumer behavior 
[13], sales, and the unemployment rate [19]. Numerous 
studies in the medical field have explored the potential 
of using Google Trends to forecast disease outbreaks, 
including those caused by influenza [20], dengue fever 
[21], the Middle East respiratory syndrome coronavirus 
(MERS-CoV) [9], measles [22], Ebola virus [23], and the 
Zika virus [24]. The link between Google Trends data 
and how people perceive certain topics can be under-
stood by looking at COVID- 19 cases in the USA accord-
ing to the WHO (covid19.who.int) and public interest. 
In Fig. 1, there was a slight increase in the rate of cases 
from August to September 2021. During this time, more 
people also showed interest in COVID- 19, likely because 
of feelings of shock and fear. As time passed, the pub-
lic’s interest (RSVI) became more accurate and sensi-
tive, reflecting real-life situations. This is clear when we 
look at the big increase in cases in January 2022, which 
was also matched by a rise in RSVI. Both lines followed 
a similar pattern, showing a marked correlation between 
them. In this work, a simple model for short term predic-
tion of cancer incidence rates is presented. The proposed 
model, named CanTrend, is based on Google Trends data 
and historical data from health agencies. Compared with 
the current models for cancer prediction, this proposed 
model is simpler, faster, and could be more accurate 
because Google Trends reduces the oversensitivity of lin-
ear models to sudden or large changes of observed data, 
if used alone.

Methods
Data sources
The actual rates of new cases (for all the populations 
worldwide in 2020, for all cancers, both sexes, all ages) 

Fig. 1  Dual Axis Chart showing the correlation between COVID- 19 cases (Solid black line, left scale) and RSVI using the term “COVID- 19” (Dashed 
red line, right scale). The rates of cases are accessed from the WHO (covid19.who.int) on 18 August 2023
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Table 1  The predicted rates for cancer incidence in 2017 using the actual rates in 2016 the RSVI in 2016 and 2017 via Google Trends

US State Actual cases in 
2016

RSVI2016 RSVI2017 RSVI2017/RSVI2016 Predicted Cases for 
2017

Actual Cases in 
2017

% Error

Alabama 27550 89 86 0.966 26621 27409 − 2.9

Alaska 3008 67 70 1.045 3143 3067 2.5

Arizona 32810 85 84 0.988 32424 33909 − 4.4

Arkansas 17410 80 85 1.063 18498 17722 4.4

California 172652 78 82 1.051 181506 175579 3.4

Colorado 23852 80 77 0.963 22958 24638 − 6.8

Connecticut 21572 95 94 0.989 21345 21731 − 1.8

Delaware 6101 88 85 0.966 5893 5804 1.5

District of Columbia 2745 78 83 1.064 2921 2966 − 1.5

Florida 135354 82 81 0.988 133703 134514 − 0.6

Georgia 52992 87 84 0.966 51165 53729 − 4.8

Hawaii 7502 68 78 1.147 8605 7677 12.1

Idaho 8670 75 82 1.093 9479 8996 5.4

Illinois 70577 81 84 1.037 73191 71140 2.9

Indiana 36765 90 86 0.956 35131 37614 − 6.6

Iowa 18850 81 83 1.025 19315 19188 0.7

Kentucky 27720 95 92 0.968 26845 28219 − 4.9

Louisiana 25878 82 79 0.963 24931 26477 − 5.8

Maine 9061 87 94 1.080 9790 9228 6.1

Maryland 31916 92 90 0.978 31222 32949 − 5.2

Massachusetts 39427 90 90 1.000 39427 39623 − 0.5

Michigan 56973 86 85 0.988 56311 56181 0.2

Minnesota 30505 84 84 1.000 30505 32369 − 5.8

Mississippi 16833 86 86 1.000 16833 17067 − 1.4

Missouri 33869 86 93 1.081 36626 35359 3.6

Montana 6430 73 78 1.068 6870 6647 3.4

Nebraska 10337 86 87 1.012 10457 10578 − 1.1

Nevada 13616 77 79 1.026 13970 14621 − 4.5

New Hampshire 8692 88 86 0.977 8494 8774 − 3.2

New Jersey 52962 91 87 0.956 50634 54033 − 6.3

New Mexico 9700 81 78 0.963 9341 9745 − 4.1

New York 115030 90 98 1.089 125255 117153 6.9

North Carolina 57398 83 83 1.000 57398 59104 − 2.9

North Dakota 3871 77 78 1.013 3921 3987 − 1.6

Ohio 67791 91 86 0.945 64066 69367 − 7.6

Oklahoma 20499 81 84 1.037 21258 20431 4.0

Oregon 22118 77 76 0.987 21831 23004 − 5.1

Pennsylvania 81244 94 99 1.053 85565 81018 5.6

Rhode Island 6343 87 85 0.977 6197 6442 − 3.8

South Carolina 28230 85 88 1.035 29226 28439 2.8

South Dakota 4811 90 88 0.978 4704 4865 − 3.3

Tennessee 37864 86 90 1.047 39625 39350 0.7

Texas 114969 76 75 0.987 113456 119174 − 4.8

Utah 10724 73 75 1.027 11018 11168 − 1.3

Vermont 3829 83 81 0.976 3737 4034 − 7.4

Virginia 41108 85 81 0.953 39174 41366 − 5.3

Washington 38132 72 75 1.042 39721 38448 3.3

West Virginia 12032 100 100 1.000 12032 12492 − 3.7

Wisconsin 33979 85 84 0.988 33579 34305 − 2.1

Wyoming 2802 68 72 1.059 2967 2891 2.6
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Fig. 2  Actual rates for cancer burden in 50 US states in 2017 compared to the predicted rates
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Table 2  The predicted cancer incidence in 2018–2020 using the developed model

US State 2018 2019 2020

Predicted Actual % Error Predicted Actual % Error Predicted Actual % Error

Alabama 30915 27463 12.6 26331 27971 − 5.9 26166 25348 3.2

Alaska 3067 3128 − 2.0 3128 3307 − 5.4 3165 3110 1.8

Arizona 34313 34797 − 1.4 35206 35159 0.1 33524 32171 4.2

Arkansas 18139 18505 − 2.0 16378 18701 − 12.4 19187 15482 23.9

California 162732 176082 − 7.6 176082 182033 − 3.3 179638 163739 9.7

Colorado 23038 25135 − 8.3 25484 26180 − 2.7 26897 24212 11.1

Connecticut 21269 21471 − 0.9 21004 21712 − 3.3 20747 19861 4.5

Delaware 5941 6067 − 2.1 6206 6306 − 1.6 5810 5535 5.0

District of Columbia 2823 2907 − 2.9 2907 2905 0.1 2648 2585 2.4

Florida 144478 140026 3.2 138417 139607 − 0.9 133114 130258 2.2

Georgia 53729 55038 − 2.4 57659 56527 2.0 51388 53486 − 3.9

Hawaii 7283 7651 − 4.8 7754 7819 − 0.8 7923 7285 8.8

Idaho 8557 9088 − 5.8 8855 9648 − 8.2 9394 9208 2.0

Illinois 73681 71351 3.3 68891 72336 − 4.8 68030 65398 4.0

Indiana 39363 37021 6.3 37021 35833 3.3 33046 28075 17.7

Iowa 18494 19443 − 4.9 20172 20125 0.2 18913 18381 2.9

Kentucky 26685 28475 − 6.3 29784 28899 3.1 27629 26240 5.3

Louisiana 27818 27404 1.5 26413 28003 − 5.7 26253 24693 6.3

Maine 9228 9282 − 0.6 9381 9741 − 3.7 8511 9151 − 7.0

Maryland 31119 33335 − 6.6 33727 34998 − 3.6 34591 30603 13.0

Massachusetts 38742 38408 0.9 40154 40842 − 1.7 37291 34966 6.6

Michigan 58825 57003 3.2 54441 57490 − 5.3 53432 51987 2.8

Minnesota 30057 32812 − 8.4 35336 33600 5.2 34400 30507 12.8

Mississippi 18456 17407 6.0 17033 17456 − 2.4 14387 15145 − 5.0

Missouri 33078 34772 − 4.9 37170 35235 5.5 32583 33694 − 3.3

Montana 6817 6624 2.9 6541 6560 − 0.3 5896 6045 − 2.5

Nebraska 10456 10902 − 4.1 10775 10773 0.0 10773 9281 16.1

Nevada 14621 13630 7.3 13630 13077 4.2 13077 14149 − 7.6

New Hampshire 8876 8928 − 0.6 9133 9266 − 1.4 8537 8177 4.4

New Jersey 52791 54430 − 3.0 53149 55269 − 3.8 54603 50347 8.5

New Mexico 9245 9740 − 5.1 10793 10143 6.4 9525 9031 5.5

New York 117153 116333 0.7 118707 120228 − 1.3 120228 105600 13.9

North Carolina 58392 60057 − 2.8 62987 62277 1.1 60829 57243 6.3

North Dakota 4038 3934 2.6 3934 4024 − 2.2 3973 3843 3.4

Ohio 70174 70851 − 1.0 74109 71897 3.1 62416 65151 − 4.2

Oklahoma 20188 21037 − 4.0 21797 21527 1.3 20776 19782 5.0

Oregon 24517 22632 8.3 21794 23745 − 8.2 21614 20141 7.3

Pennsylvania 73653 80903 − 9.0 83600 82588 1.2 77260 72403 6.7

Rhode Island 6669 6561 1.7 6561 6747 − 2.8 6210 5552 11.9

South Carolina 27469 28610 − 4.0 30630 28875 6.1 25385 27362 − 7.2

South Dakota 4533 4958 − 8.6 4898 5150 − 4.9 4451 4738 − 6.1

Tennessee 38476 38993 − 1.3 43424 39287 10.5 33675 36396 − 7.5

Texas 122352 124867 − 2.0 128110 127456 0.5 125843 116875 7.7

Utah 10572 11748 − 10 11913 12002 − 0.7 11502 11602 − 0.9

Vermont 3934 4039 − 2.6 3937 4073 − 3.3 3967 3710 6.9

Virginia 42387 41537 2.0 42037 43797 − 4.0 42754 39599 8.0

Washington 37423 39120 − 4.3 42871 39859 7.6 35873 36018 − 0.4

West Virginia 12492 12539 − 0.4 12539 12362 1.4 11249 11445 − 1.7

Wisconsin 33488 34615 − 3.3 39258 36078 8.8 30647 32962 − 7.0

Wyoming 2690 2858 − 5.9 2986 3051 − 2.1 2789 2857 − 2.4
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were collected from the World Health Organization 
(WHO, iarc.who.int). The actual data of the United States 
population-based cancer incidence have been reported 
by North American Association of Central Cancer Reg-
istries (NAACCR) (accessed via CiNA Explorer, August 
2023) [25]. The rates of the United States were reported 
for all ages, all races and for both males and females.

Method and validation
Google Trends was used to obtain the relative search 
volume index (RSVI) for the topic; “cancer”. The result-
ant RSVI indicates the number of searches for a certain 
topic in a definite time period or in a geographical region 
relative to the time period or region with the peak search 
attempts. RSVI is calculated on a scale of 100, where 100 
refers to the maximum search frequency, 50 indicates 
mid-level search frequency, while 0 designates insuffi-
cient search data for this topic [26]. The proposed model 
relies on the actual rates of cancer incidence in NAACCR 
database and the change in RSVI from year to year. For 
example, to calculate the predicted rates of cancer inci-
dence in 2017, the actual rates of cancer incidence in 
NAACCR database in 2016 were multiplied by the ratio 
RSVI2017/RSVI2016 where RSVI2017 and RSVI2016 
are the RSVI values of a selected country or state for the 
search topic “cancer” in 2017 and 2016, respectively. The 
accuracy of the predicted rates was assessed by calculat-
ing the percentage error according to the equation:

%Error =
Pr − Ac

Ac
× 100

where Pr is the predicted rate of cases, and Ac is the 
actual rate of cases in a selected country or state during 
a pre-defined period according NAACCR database. The 
model was applied to predict the rates of new cancer 
cases in fifty U.S. states for four consecutive years (2017, 
2018, 2019, 2020). The selection of years was restricted 
with data availability. The model was applied for predict-
ing the rates of cancer incidence in 50 different American 
states and in 54 countries.

Results and discussion
The prediction of the cancer burden is crucial for health 
planning. The nowcasting of cancer incidence helps 
health care organizations prepare the necessary resources 
for diagnosis, treatment, and rehabilitation. The pro-
posed model uses the actual data together with the data 
available on Google Trends to predict cancer incidence. 
The results in Table 1 show the predicted new cases in 50 
US states in 2017 based on the actual data in 2016, and 
the RSVI in 2016 and 2017. The increase (or decrease) in 
RSVI is expected to be associated with a corresponding 
increase (or decrease) in cancer incidence. The %error 
of prediction was calculated and was found to have a 
median value of − 0.98%. While some states showed high 
%error (e.g. Hawaii and Vermont), the %error in most 
of the states did not exceed 6%. The high level of simi-
larity between the predicted rates for cancer incidence 
within 2017 can be markedly noticed in Fig.  2, which 
reflects the reliability of the model in the prediction of 
new cancer cases. The results of 2018–2020 are shown 
in Figures S1-S3. To confirm the model validity, the pre-
dicted rates for 2018, 2019 and 2020 were calculated and 

Fig. 3  The US heat map showing the actual (left) and the predicted new cancer cases (right) in 2020
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the %errors of predication were compared as shown in 
Table 2.

The following figure shows the US heat map for the 
actual and the predicted cancer cases in 2020. The high 
similarity between the actual rates of cases and the pre-
dicted rates shown in Fig. 3 indicates the reliability of the 
developed model. Similar results were obtained for the 
years 2017–2019 as shown in Figures S4-S6.

To facilitate a comparative analysis between our Google 
Trends-based model and the approach adopted by the 
American Cancer Society [27–30], a line graphs depicting 
the %errors of both models has been included to cover 
the time span in 2017 in Fig. 4 and from 2018 to 2020 in 
Figure S7-S9. The concept behind this cancer prediction 
model involves utilizing population-based data on cancer 
incidence and mortality in the United States to estimate 

Fig. 4  A comparison between the % error of our proposed Google Trends (GT)-based model and the model used by Siegel et al., published 
by the American Cancer Society (ACS) in 2017

Fig. 5  US States map showing the states with the highest rates of cancer cases expressed by dark blue and states with lowest rates expressed 
by light blue in 2023 (till August)
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and analyze new cancer cases and deaths. By incorporat-
ing epidemiological principles and statistical methods, 
the model can track trends in cancer rates over time.

Given the COVID- 19 pandemic’s onset in 2019, health 
services have encountered partial or complete disrup-
tions in various nations. Such disruptions could poten-
tially account for the delay in capturing cancer incidence 
data since 2019 via the WHO website. This highlights 
the significance of our model in addressing challenges 
posed by such circumstances. Fear and concern were the 
motives to switch the interest from cancer to COVID- 19. 
To overcome this problem, we used the last predicted 
data available to project the expected rates of cancer 
cases in the next year. For example, the actual case rates 
for 2021 were not available on the WHO website at the 
time of submitting this study. Our model could predict 
cancer incidence in 2021, based on actual data in 2020, 
and the RSVIs in 2020 and 2021. To predict cancer inci-
dence in 2021, the expected rates in 2021 were employed 
together with the RSVIs in 2021 and 2022. The Same 
principle was applied to predict cancer incidence in 2023 
in the American states, as shown in Fig. 5. Although this 
approach overcomes the problem of data unavailability, 
The accuracy cannot be assessed as the actual data were 
not available at the time of submitting this study. Moreo-
ver, the estimated %error is expected to increase due to 
the cumulative deviation from reality from year to year. 
This problem can be solved once the actual data for the 
last year are accessible. Table 3 shows the predicted rates 
of new cancer cases for the fifty states in 2021, 2022, and 
2023.

The same protocol is applied to 54 different popula-
tions in different countries to predict new cancer cases 
in 2021. The predicted new cancer cases are shown in 
Table  4. According to our findings, the United States 
of America has the highest cancer burden in 2023 with 
2,165,247 new cases followed by the United Kingdom in 
the second place with 1,040,818 new cases (Fig. 6).

Conclusion
A novel model for cancer incidence prediction was devel-
oped using data from Google Trends. The model could 
successfully make accurate short-term prediction of the 
cancer incidence rates in 50 American states and in 54 
different countries since 2017. The results were compared 
with actual incidence rates, and the % relative errors were 
calculated. The model showed high accuracy, simplicity, 
and reliability. These findings could be helpful for health 
care teams to set plans for diagnosis and treatment of 

Table 3  The Predicted new cancer cases for the fifty states in 
2021–2023

US State 2021 2022 2023

Alabama 28553 28553 26222

Alaska 3017 3435 2971

Arizona 30994 34133 34133

Arkansas 16658 17246 16462

California 170289 172472 172472

Colorado 23244 22921 23889

Connecticut 20092 21016 18706

Delaware 5805 6143 5873

District of Columbia 2585 2765 2729

Florida 135024 139789 147732

Georgia 52817 54155 60172

Hawaii 6902 7285 7285

Idaho 9457 9955 10577

Illinois 68709 67881 73676

Indiana 29766 29428 30781

Iowa 18617 20266 22387

Kentucky 26240 26843 27145

Louisiana 25351 29302 27656

Maine 10143 9813 10364

Maryland 30603 30963 31323

Massachusetts 38712 37464 39545

Michigan 53961 56593 60542

Minnesota 30152 29088 30507

Mississippi 16760 17972 16962

Missouri 33694 35261 36437

Montana 5790 6215 6896

Nebraska 9390 9718 9718

Nevada 13791 15045 14686

New Hampshire 7978 8676 8177

New Jersey 51575 50961 56487

New Mexico 9031 9266 9852

New York 105600 91872 90816

North Carolina 54517 57924 55199

North Dakota 3498 3843 3942

Ohio 71749 74223 76697

Oklahoma 18590 20020 19544

Oregon 21559 21559 21843

Pennsylvania 77396 77396 83222

Rhode Island 5483 6169 6237

South Carolina 26678 30440 31466

South Dakota 5550 5686 5483

Tennessee 35529 38562 38562

Texas 112380 124367 121370

Utah 11938 11938 13115

Vermont 4155 4106 4155

Virginia 37184 40082 39599

Washington 38019 37019 38519

West Virginia 12577 12577 12577

Wisconsin 36300 35465 37969

Wyoming 2991 3080 2946
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Table 4  The Predicted rates of new cancer cases in 2021–2023 worldwide

Country Predicted cancer cases in 2021 Predicted cancer cases in 2022 Predicted 
cancer cases in 
2023

Algeria 56081 58418 51408

Argentina 109065 99370 92099

Australia 184635 197823 184635

Bangladesh 137962 137962 112878

Belgium 80293 86241 80293

Bolivia 13404 15549 14745

Brazil 485614 509302 521147

Canada 255657 252540 240069

Chile 49470 53276 53276

Colombia 101176 105994 115630

Costa Rica 11467 12661 12422

Denmark 36457 40746 34313

Dominican Republic 16865 18130 16021

Ecuador 28622 32526 29273

Egypt 113919 134632 124276

France 426915 459755 443335

Germany 502815 502815 628519

Ghana 17340 21675 19674

Guatemala 14930 16247 15808

India 1023410 1173912 1023410

Indonesia 272878 272878 272878

Ireland 32187 29200 28869

Italy 332215 332215 332215

Japan 1028658 2057316 1028658

Kenya 34573 43373 42745

Malaysia 34559 37119 38399

Mexico 177726 188390 177726

Morocco 54207 56789 49045

New Zealand 33769 30739 30306

Nigeria 102121 131623 118007

Norway 32721 37083 34902

Pakistan 158567 162531 146675

Panama 7007 7816 6872

Paraguay 10571 11745 10571

Peru 62088 69849 71143

Philippines 129727 148946 163360

Poland 136383 204575 272767

Portugal 57108 60467 60467

Puerto Rico 12434 12757 12757

Romania 96061 98886 104537

Russian Federation 394247 394247 394247

Saudi Arabia 23595 25740 23595

Singapore 21302 20304 21968

South Africa 86221 90924 84653

Spain 815883 784503 753123

Sweden 40566 38374 39470

Switzerland 30242 33266 30242

Thailand 86653 103983 86653
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cancer. However, this model was not used for long term 
prediction because it depends on the availability of data 
from searches on Google Trends. Yet, the model saves 
time, and effort plus being helpful to overcome the prob-
lem of the time lag in providing actual incidence rates of 
cancer.
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Table 4  (continued)

Country Predicted cancer cases in 2021 Predicted cancer cases in 2022 Predicted 
cancer cases in 
2023

Turkey 46767 70150 46767

United Arab Emirates 59286 62491 59286

United Kingdom 1040818 1040818 1040818

United States of America 2048836 2211811 2165247

Uruguay 8036 8351 6933

Viet Nam 18629 14903 14903

Fig. 6  World map showing countries with the highest rates of cancer cases expressed by dark blue and countries with lowest rates expressed 
by light blue in 2023 (till August)
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