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Abstract 

Background  Acute respiratory infections (ARIs) in young children pose a significant global health challenge, leading 
to high rates of illness and death. They are estimated to be the fourth leading cause of mortality worldwide, particu-
larly impacting children under five. This study aimed to identify the most effective time series model(s) for forecasting 
the epidemiological season burden of ARIs for the current 2023/2024 period in Italy.

Methods  Data on the burden of ARIs’ in children aged 0–14 years were retrieved from Pedianet, an Italian paediatric 
primary care database which includes over 200 family paediatricians. We analysed monthly incidence rates of ARIs 
from September 2010 to September 2023, following the typical seasonal pattern of these infections. Several forecasting 
models were compared to predict the future burden of ARI: Error, Trend, Seasonality (ETS); Seasonal Auto-Regressive 
Integrated Moving Average (SARIMA); Unobserved Component Model (UCM); and Trigonometric, Box Cox, ARMA 
errors, Trend, Seasonal (TBATS). We evaluated each model’s accuracy by examining the residuals and the Mean Absolute 
Percentage Error (MAPE). The period between March 2020 and February 2022 was forecasted to represent the normal 
trend without COVID-19. Model parameters were estimated using the in-sample and out-of-sample approach.

Results  The analysis included data from over 1.4 million cases of ARIs retrieved in children aged 0–14 years. The ETS 
model was implemented to predict the pandemic period. Overall, our findings suggest that exponential smoothing 
models as ETS (MAPE = 6.85) and TBATS (MAPE = 6.87) were most effective in predicting future trends in monthly ARIs’ 
burden compared to other methods (i.e., UCM MAPE = 11.08, and SARIMA MAPE = 25.33).

Conclusions  These findings suggest that exponential smoothing models are preferable for forecasting pediatric 
ARIs’ burden trends in Italy. However, epidemiological data from the ongoing season are crucial for understanding 
whether residual pandemic effects continue affecting respiratory infection patterns.
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Introduction
Acute Respiratory Infections (ARIs) represent one of the 
leading causes of morbidity and mortality in the paedi-
atric population, especially in children aged 0 to 5 years, 
who are more susceptible due to factors such as imma-
ture immune systems, close contact with daycare or 
school settings, and other environmental exposures [1, 
2]. The World Health Organization (WHO) has identified 
ARIs, particularly lower respiratory infections, as a sig-
nificant global health burden, ranking them as the fourth 
leading cause of death and disability-adjusted life years 
(DALYs) [3]. These infections significantly strain health-
care systems, constituting a major reason for paediatric 
outpatient and inpatient care [4].

ARIs are predictable and seasonal despite generat-
ing outbreaks that significantly impact global health and 
healthcare systems. Understanding the impact of ARIs 
in real-world scenarios is crucial for effective public 
health interventions, including vaccination programs and 
healthcare systems preparedness, to mitigate this pub-
lic health challenge [5]. Moreover, outlining the epide-
miology of ARIs over time, including peaks, trends, and 
seasonality, can provide valuable insights for health poli-
cymakers in implementing targeted surveillance systems 
and preventing future ARIs outbreaks [6].

Time series models are the widest-used methods to 
analyze temporal variations in various phenomena. They 
are particularly well-suited for studying the dynamic 
nature of infectious disease outbreaks and their fluctua-
tions over time. Some models focus on explaining the 
natural history of infections in the population, delineating 
states such as Susceptible, Infected and Recovered (SIR) 
models, and providing a foundational understanding of 
transmission and immune dynamics [7]. Others are more 
oriented to using past values and errors to predict future 
values, accounting for trends and seasonality (i.e., autore-
gressive integrated moving average models  (ARIMA)) 
aiding in understanding overall patterns and cyclical vari-
ations (Exponential Smoothing and Unobserved Compo-
nent Models) [8–11]. Lastly, new techniques combine the 
best-fitting parts of these models to build a new category 
defined as hybrid models [12].

In the past three years since the COVID-19 pandemic, 
an increasing number of studies have reported time series 
approaches to forecasting new cases, hospital admissions 
and deaths [13, 14]. However, many studies focus on a 
single type of time series approach, resulting in uncertain 
accuracy measures regarding forecasting [15]. Assuming 
that each historical series has inherent characteristics 
that distinguish them from others; conversely, each fam-
ily model is able to capture only specific patterns. Testing 
different methodologies on the same time series is criti-
cal to providing the best fit and forecast.

This study conducted a comparative analysis of various 
time series forecasting methods to determine the most 
accurate predictor of monthly fluctuations in pediatric 
acute respiratory illnesses at the community level. The 
objective was to mitigate the burden on pediatric pub-
lic health resources during the 2023–2024 season using 
retrospective data up to 2010 and establish the optimal 
method for predicting future outbreaks of pediatric acute 
respiratory illnesses.

Materials and methods
Data source
Pedianet (http://​www.​pedia​net.​it) is a self-sufficient net-
work of over 200 family paediatricians (FPs) who inte-
grate the Junior Bit software into their clinical practices, 
forming an established paediatric primary care data-
base. The network encompasses approximately 3% of the 
Italian paediatric population and was previously com-
prehensively detailed [16, 17]. Pedianet captures patient-
level information, including demographics, health status, 
clinical symptoms, drug prescriptions, and outpatient 
diagnoses, which is anonymized and securely stored in a 
protected cloud environment, identified only by a unique 
numerical identifier.

Study design and study population
This epidemiological time series study conducted a com-
parative analysis of various models to determine the 
optimal model for explaining the trend and seasonality 
within the monthly incidence rate of pediatric ARIs. The 
study cohort consists of all ARIs recorded by the FPs dur-
ing a 13-year study period spanning September 2010 and 
September 2023. Each year, the observation period was 
divided into epidemiological seasons from September 1st 
to August 31st.

Cohort selection
The study included all children aged 0–14 enrolled in 
Pedianet between September 2010 and September 2023. 
Under the Italian National Healthcare Service, FPs are 
healthcare professionals responsible for conducting rou-
tine check-up examinations for preventive and medi-
cal purposes at specific stages of the child’s life (i.e. 1st 
month, 2nd-3rd months, 6th month, 8-9th months, 12th 
month, 18th month, 24th month, 36th month, 5-6th years, 
8-10th years, 10-12th years, and 12-14th years of age). To 
minimize misclassification, children without scheduled 
well-child visits with their FPs, consistent with previous 
literature, were excluded [18].

Definition of exposure
ARIs were identified using the International Classifica-
tion of Diseases, Ninth Revision, Clinical Modification 

http://www.pedianet.it


Page 3 of 10Boracchini et al. BMC Public Health          (2025) 25:810 	

(ICD-9-CM) codes and a freely-entered text field 
designed and validated by an expert clinical data man-
ager and divided into Lower Respiratory Tract Infec-
tions (LRTIs) and Upper Respiratory Tract Infections 
(URTIs) (Supplemental Materials, Table  S1). All ARI 
cases from September 2010 to September 2023 were col-
lected. Thereafter, cases were summarized into calendar 
monthly incidence rates per 1000 person-day.

Time series models
Several time series models were employed to identify 
the optimal model for explaining pediatric monthly ARI 
incidence rate patterns and forecasting future trends. 
The Seasonal Autoregressive Integrated Moving Average 
(SARIMA), Error Trend and Seasonality (ETS), Trigo-
nometric seasonality, Box-Cox transformation, ARMA 
errors and Trend and Seasonal components models 
(TBATS), and Unobserved Component Models (UCM) 
models were selected based on their ability to capture 
different aspects of time series data and forecast accu-
racy. Each model’s features are described below.

(i)	SARIMA is the classic time series model used in sev-
eral time series studies to capture both non-sea-
sonal and seasonal patterns. It can be summarized 
as [8]:

where p is the autoregressive order (AR) necessary to 
make forecasting based on past values, d is the degree of 
differencing involved, and q is the order of the moving 
average part (MA) to forecast starting from the previous 
forecast error; while P, D and Q indicate the correspond-
ing seasonal parameters for a m seasonal period [8]. The 
selection of the order of the ARIMA model was based on 
the Akaike information criterion (AIC) and Maximum 
Likelihood Estimation (MLE) from auto.arima () func-
tion in the package forecast [19] using R software. For 
ARIMA models, a common technique to stabilize the 
variance in the data (achieve homoscedasticity) is a loga-
rithmic transformation. We applied this transformation 
to our data before analyzing it with the ARIMA model 
[20].

	(ii)	 ETS, an innovative state space model for exponen-
tial smoothing, is used without a clear trend or 
seasonal pattern. The core idea behind ETS mod-
els is to decompose the time series data into these 
three components (i.e., error, trend, and seasonal-
ity) using exponential smoothing techniques. This 
allows for more accurate forecasts compared to 
more straightforward methods like naïve forecast-

(1)ARIMA (p, d, q)(P,D,Q)m

ing. Exponential smoothing acts as the foundation 
for this intricate combination. It allows the model 
to assign different weights to past observations 
based on their relevance to the current prediction, 
giving more weight to recent data points while 
gradually fading out the influence of older ones. It 
can be expressed as [20]:

The error component may exhibit an additive (A) or 
multiplicative nature (M); the trend component can 
manifest as non-existent (N), additive, or additive with 
damping characteristics (Ad); and the seasonal compo-
nent may be non-existent, additive, or multiplicative. 
The nature-component-model selection is made on 
AIC [9, 20]. The analysis was performed in R using the 
function ets() in the package forecast [19].

	(iii)	 TBATS are designed to handle intricate seasonal 
patterns in time series data using a combination 
of the specified techniques. This approach is par-
ticularly effective in capturing dynamic seasonal 
patterns that may evolve over time. As above, 
exponential smoothing allows the model to assign 
different weights to past observations based on 
their relevance to the current prediction, giving 
more weight to recent data points while gradu-
ally fading out the influence of older ones. Over-
all, TBATS is a powerful tool for forecasting time 
series data with complex seasonal behaviour. It’s 
particularly useful in scenarios where traditional 
methods may struggle due to non-linearity, diverse 
seasonality, or evolving trends. The general struc-
ture is as follows [20, 21]:

Where ω is the smoothing parameter for the Box-Cox 
transformation to stabilize the variance of the series, 
p and q are the parameters of the ARMA process, ϕ is 
the trend smoothing parameter, and the pairs {mt, kt} 
identify the seasonality and the corresponding terms of 
the Fourier series [22]. This model is one of the most 
versatile, considering nonlinear patterns and autocor-
relations in the residuals [20]. Auto model selection 
is based on the AIC criterion by adding and removing 
transformations, considering or not the trend and its 
damping version, with or without ARMA (p, q) resid-
ual modelling and using several harmonics to deter-
mine the seasonal effects if present. The analysis was 

(2)ETS (Error, Trend, Seasonal)

(3)
TBATS(ω, p, q,ϕ, m1, k1 , m2, k2 , . . . , mT , kT )
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performed in R using the function tbats() in the pack-
age forecast [19, 21].

	(iv)	 UCM are powerful tools for decomposing time 
series data into various underlying components. 
They combine the adaptability of ARIMA with the 
interpretability characteristic of smoothing models 
to capture the complexity of temporal variations 
through the decomposition into clearly defined 
components. Its terminology per se highlights the 
focus on capturing the underlying "structure" of the 
data rather than just fitting a model to the observed 
values. They assume that the observed data com-
bines several unobserved components, hence the 
"unobserved" part of the name. Overall, UCMs 
are valuable tools for time series analysis when the 
goal is to gain insights into the underlying structure 
and driving forces behind the data. They excel at 
decomposing complex patterns into interpretable 
components, aiding in understanding past trends 
and making informed predictions. They can be 
expressed as [22]:

With Y the observed series, µ the trend to capture the 
overall direction, γ the cycle to identify periodic vari-
ations, σ , the seasonal component reflects regular and 
repetitive variations at specific intervals, ε, and the resid-
ual error represents fluctuations not explained by the 
previous combine factors [22]. The model was selected by 
adding/removing/modifying the components and com-
paring them with the AIC. The analyses were performed 
using PROC UCM in SAS software version 9.4 (SAS 
Institute, Inc., Cary, NC, USA).

Forecast assessment
The historical series was divided into in-sample (60%) 
and out-of-sample (40%) data for parameter estimation 
and model validation. The parameters were estimated on 
the training set, and the selected models were performed 
on the test set. The more efficient model was used to pre-
dict the whole series.

To compare the accuracy of the four models in predict-
ing future values, we calculated the Mean Absolute Per-
centage Error (MAPE) metric as:

where y is the observed and ŷ the fitted series from peri-
ods t = 1 to N (total number of observations). The met-
ric is independent of scale since it relies on percentage 

(4)Yt = µt + γt + σt + εt

MAPE =
1

N

∑N

t=1

∣∣∣∣
yt − ŷt

yt

∣∣∣∣ ∗ 100

errors, making it unit-free. Using a percentage measure 
of accuracy is always preferable when comparing fore-
casts on different time series [23]. Some disadvantages 
are infinite or undefined results with zero data points and 
a bias towards negative errors [24].

Statistical analysis
The socio-demographic and clinical characteristics of 
the cohort were described through frequencies and per-
centages for categorical variables and median and inter-
quartile range (IQR) for continuous ones. Descriptive 
statistics were used to check if the data aligns with the 
existing literature.

The time series was examined by applying the Sea-
sonal and Trend decomposition using the LOESS (STL) 
method. This robust approach employs locally fitted 
regression models with LOESS smoothing to decompose 
the time series into trend, seasonal, and remainder com-
ponents. The Augmented Dickey-Fuller and the Seasonal 
Kendall Test assessed stationarity and monotonic trends, 
respectively.

We used a counterfactual approach to model the hypo-
thetical epidemiological situation in Italy from March 
2020 to February 2022, assuming no COVID-19 out-
break, constructing a model that represents the “normal” 
trends would have been without the pandemic.

For each of the four-time series models previously 
mentioned, (i) first, we predicted the months heavily 
impacted by the COVID-19 outbreak (March 2020 to 
February 2022) using data on previous epidemiological 
seasons considering in-sample (September 2010—Feb-
ruary 2016) and out-of-sample (March 2016—February 
2020) period; and (ii) second, we forecasted the upcom-
ing epidemiological season (October 2023 to September 
2024) based on data spanning September 2010 to Sep-
tember 2023 (in-sample: September 2010—August 2018 
and out-of-sample: September 2018 – September 2023), 
which incorporated the previously forecasted COVID-19 
period (March 2020 to February 2022).

The underlying assumptions of each model were evalu-
ated through the model’s residuals to assess whether (i) 
the spread of the residuals is consistent (no heteroscedas-
ticity), (ii) the residuals are normally distributed, and (iii) 
there is any correlation between the residuals at differ-
ent points in time. The final performance of the different 
proposed approaches was compared using an appropriate 
error measure, the MAPE.

A < 0.01 two-sided  p-value was considered significant 
for all the tested hypotheses. The statistical analyses were 
performed using SAS software version 9.4 (SAS Institute, 
Inc., Cary, NC, USA) and R Statistical Software version 
3.6.1 (R Foundation for Statistical Computing, Vienna, 
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Austria). We followed the strengthening of the reporting 
of observational studies (STROBE).

Results
Over two-thirds of children (236,642 / 345,877) included 
in the study from September 2010 to September 2023 had 
at least one ARI diagnosis. Of the 236,642 children, they 
reported a total of 1.4 million ARI cases. Among them, 
769,637 (53.19%) were found in males, with higher preva-
lence in children aged 0 – 2 (34.09%) and 5 – 11 (35.75%) 
years at infection. LRTIs were less frequent compared to 
URTIs (16.75% vs 83.25%, respectively), also presenting a 
lower median age (3 vs 4 years, respectively) (Table S2).

Figure S1 displays the monthly incidence rate time 
series of ARIs spanning the study period from September 
2010 to September 2023, along with the STL decomposi-
tion. Notably, the Augmented Dickey-Fuller test confirms 
the stationary nature of the time series (p = 0.01). A con-
sistent trend is shown throughout the entire timeframe, 
featuring a gradual decline in the incidence rate over the 
years (p < 0.01). The time series revealed distinct seasonal 
variation, characterized by fluctuations and identifi-
able peaks in incidence during the winter to early spring 
months. In the remainder component, outliers emerge in 
the COVID-19  years, indicating a pronounced decrease 
in the incidence rate during this period.

Tables  1 shows the chosen models and their referred 
accuracy in terms of MAPE according to the two differ-
ent forecast periods: (i) the COVID-19-related period 
and (ii) the overall period and the forecast assessment 
method.

The best models for fitting the in-sample period in 
forecasting the months impacted by the COVID-19 
outbreak (i) were a SARIMA with drift, p = P = D = 1 
and the others parameters equal to zero; an ETS with 

multiplicative error, none trend and multiplicative 
seasonality; a TBATS with a Box-Cox transforma-
tion based on value 0.485, no ARMA error, no trend, 
monthly seasonality and 5 terms of Fourier; and a UCM 
with irregular, level and slope component and a spline 
with fourth degree and 6 knots from position four to 
nine to model the seasonal component. The ETS has 
produced a lower MAPE (6.93), similar to the TBATS 
(7.11), compared with the SARIMA (14.60) and the 
UCM (12.27). By validating the models in the out-of-
sample set of data (March 2016 – February 2020), 
all the models exhibited a lower MAPE except the 
SARIMA (19.98 vs 14.60, respectively, for in- and out-
of-sample). As the ETS maintained high performance 
in the test set (MAPE = 5.43), this model was used to 
forecast COVID-19 years with an overall MAPE of 6.65 
(Table 1A, Fig. 1).

Furthermore, the best models for fitting the whole 
series (i.e., from September 2010 and September 
2023) in forecasting the upcoming epidemiologi-
cal season (ii) were characterized in the in-sample by 
a SARIMA with drift, p = D = 1, P = 2, and the oth-
ers parameters equal to zero; an ETS with multipli-
cative error, no trend and multiplicative seasonality; 
a TBATS with a Box-Cox transformation based on 
value 0.123, no ARMA error, no trend, monthly sea-
sonality and five terms of Fourier; a UCM with irregu-
lar, level, fixed slope and a fourth degree spline with 
six knots from December to May component. Similar 
to the previous forecast, this prediction again identi-
fies the ETS and TBATS models as the most accurate, 
with MAPE values of 6.69 and 6.72, respectively. The 
UCM and SARIMA models follow, with MAPEs of 
11.70 and 13.07, respectively. In the validation phase, 
the TBATS showed a lower MAPE (6.81), while in the 

Table 1  MAPEs for in-sample and out-of-sample approach in the two different forecast period

a Applied on log-transformed series

Model In-sample Out-of-sample Overall

A) September 2010—February 2020

  ETS(M,N,M) 6.93 5.43 6.65

  TBATS(0.485,{0,0},-,{< 12,5 >} 7.11 5.61 7.77

  ARIMA(1,0,0)(1,1,0) [12] with drifta 14.60 19.98 17.62

  UCM with irregular, level, slope and seasonality modelled 
with a fourth degree spline and 6 knots from December to May

12.27 10.40 10.97

B) September 2010 – September 2023 with forecasted COVID-19

  ETS(M,N,M) 6.69 7.46 6.85

  TBATS(0.123,{0,0},-,{< 12,5 >} 6.72 6.81 6.87

  ARIMA(1,0,0)(2,1,0) [12] with drifta 13.07 29.94 25.33

  UCM with irregular, level, slope and seasonality modelled 
with a fourth degree spline and 6 knots from December to May

11.70 10.20 11.08
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overall period, no differences were found in using the 
TBATS or the ETS (MAPE 6.87 vs 6.85, respectively) 
(Table 1B, Fig. 2).

By evaluating the parameter selection disparities for 
the two forecasts utilizing the same modelling frame-
work, we can see that the ETS and the UCM main-
tained the same structure, the TBATS decreased the 
Box-Cox transformation parameter, and the SARIMA 
varied in the autoregressive order.

Discussion
Different time series models were compared to predict 
the pediatric monthly incidence rate of acute respira-
tory illnesses (ARIs) in Italy. Initially, we predicted the 
period from March 2020 to February 2022, hypothesizing 
the scenario without the COVID-19 outbreak. The ETS 
(M,N,M) model outperformed others, with a MAPEs of 
5.43. Subsequentially, we focused on predicting ARIs for 
the ongoing 2023/2024 season, factoring in the simulated 

Fig. 1  ETS forecast assessment (a) and estimation (b) of the ARI monthly-IRx1000 person-day, seasons 2010 – 2020. Series contains original data; 
Fitted Train and Fitted Test are referred to the parameters estimation and validation, respectively; Fitted overall are the results of the validated 
models application; Forecast and the correspondent 95% confidence interval explain the pandemic years prevision (March 2020 – February 2022). 
Abbreviations: ETS, Error, Trend and Seasonality; ARI, Acute Respiratory Infection; IR, Incidence Rate
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COVID-19 period. Both TBATS and ETS (M,N,M) 
emerged again as the most accurate models (MAPE 6.81 
and 7.46, respectively), followed by UCM and SARIMA 
(MAPE 10.20 and 29.94, respectively). The in-sample and 
out-of-sample approach was adopted to ensure predic-
tion appropriateness.

We selected models from two common forecast-
ing families, ARIMA and Exponential Smoothing (ETS, 
TBATS, UCM), covering a wide range of forecasting 
tasks. While some Exponential Smoothing models (linear 
ones) can be represented by ARIMA models, the more 
complex non-linear Exponential Smoothing models lack 
direct ARIMA equivalents. Conversely, there are ARIMA 
models that cannot be replicated using Exponential 
Smoothing [20]. In order to achieve homoscedasticity 
before ARIMA implementation, a logarithmic transfor-
mation has been applied.

As we have proposed a model comparison study, using 
a monthly time series was an acceptable balance between 

the prediction’s accuracy and the model’s adaptability to 
the data. However, if the intention was to do surveillance 
with the need to make short-term predictions, a weekly 
time series would be recommended to guide healthcare 
providers in targeted and prompt interventions.

Our data were representative of the epidemiological 
burden associated with ARI. We observed that males 
are more susceptible to contracting ARI, as confirmed 
by Hasan et al. with 2.9% vs 2.5% and Chobe et al. with 
20.5% vs 7.2% of males and females with confirmed ARIs, 
respectively. [25, 26] Furthermore, consistent with previ-
ous literature, children under five years of age were found 
to be more vulnerable to suffering from ARIs [1, 2].

Our evaluation using metrics like MAPE revealed that 
the SARIMA model had higher error rates than models 
like ETS and TBATS when fitted to the ARIs’ monthly 
time series. This suggests that SARIMA may not be able 
to fully capture the intricate patterns within this specific 
data set. This aligns with previous studies on infectious 

Fig. 2  Forecast assessment (a-c) and estimation (b-d) of the ARI monthly-IRx1000 person-day, seasons 2010–2023. *, Error Trend and Seasonality; 
**, Trigonometric seasonality, Box-Cox transformation, ARMA errors and Trend and Seasonal components; Series contains original data 
with the pandemic years forecasted with an ETS model; Fitted Train and Fitted Test are referred to the parameters estimation and validation, 
respectively; Fitted overall are the results of the validated models application; Forecast and the correspondent 95% confidence interval explain 
the current epidemiological season prevision. Abbreviations: ARI, Acute Respiratory Infection; IR, Incidence Rate
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diseases. Wang et  al. and Kuan et  al. showed that ETS 
performs better than ARIMA models. [27, 28] In our 
case, the TBATS and ETS models, which inherently use 
exponential smoothing techniques, likely excel due to 
their capability to handle such complexities. This allows 
for more accurate forecasts compared to more straight-
forward methods like naive forecasting (e.g., simple aver-
age, last value, moving average methods). Exponential 
smoothing acts as the foundation for this intricate com-
bination. It enables the model to assign different weights 
to past observations based on their relevance to the cur-
rent prediction, giving more weight to recent data points 
while gradually fading out the influence of older ones. 
However, TBATS has a more complex structure, adding 
Fourier’s term to model seasonality, allowing forecasting 
more effectively with the anomalies in the last year. Fur-
thermore, the reason why exponential smoothing models 
outperformed the others can be seen in the decomposi-
tion in Fig. 1. The consistent and stable seasonal pattern 
over time observed in our data drive this superior perfor-
mance, as the model’s ability to effectively capture these 
patterns enhances its predictive accuracy. Sorokina et al. 
demonstrated the superiority of TBATS vs SARIMA in 
predicting severe acute respiratory infections. [29] While 
the UCM model performed reasonably well in our com-
parison, it has not received much attention in previous 
research and lacks essential features for directly model-
ling ARIs at the community level. Interestingly, all our 
decomposition-based models concurred in excluding 
the trend component, suggesting its stability over time 
and reinforcing the consistency of our model selection 
process.

A major strength of our study lies in the nature of the 
data. There is no evidence in the literature of research 
that analysed community-based ARIs in such a large pop-
ulation of almost three hundred thousand children with 
more than a million infections. As the data came from 
the FP ambulatorial practice, the representativeness of 
the ARI’s burden is more accurate with respect to using 
data from different healthcare sources. This allowed us to 
train our models in a representative framework to guide 
future epidemiological burden predictions. Our monthly 
forecasting of ARI outbreaks is a crucial tool for the pub-
lic health service to minimize the epidemiological burden 
of these illnesses and ensure a more efficient response 
to seasonal fluctuations. This enables them to optimize 
staffing, medication stockpiles, and other resources to 
manage the influx of patients effectively. Furthermore, 
compared to machine learning models, the tested models 
are easy to implement, still achieving more than satisfac-
tory results.

Our study has potential limitations. First, emerg-
ing complex hybrid and machine learning models were 

developed to study time series data, potentially con-
tributing to improving forecast accuracy. Additionally, 
the epidemiological season 2022–2023 may still present 
anomalous characteristics due to the COVID-19 pan-
demic, biasing new ARI burden estimates. Third, a mis-
classification is possible in the case in which the FPs do 
not report the ARI case. Moreover, our predictions are 
derived from forecasts made during the COVID-19 years. 
Nevertheless, these years do not influence model selec-
tion as they are not included in the in-sample data. Fur-
thermore, the predictions for the new epidemiological 
season assign greater weight to recent observations (i.e., 
18 months after the predicted years).

Conclusion
Although our models showed promising results, incor-
porating data from the ongoing epidemiological season 
remains crucial for accurately defining ARI trajectories 
in the post-COVID-19 era and guiding targeted inter-
ventions. Given the inherent variability of ARIs, we reit-
erate the recommendation of employing multiple time 
series models to identify the best fit for specific predic-
tion tasks. Furthermore, the user-friendliness and adapt-
ability of the presented models make them valuable tools 
for researchers and practitioners alike. Additionally, this 
study highlights the importance of ongoing monitoring 
and exploring new models to improve our understand-
ing and prediction of pediatric ARI trends, representing 
a promising strategy for preparedness programs. The 
clinical implications of these findings should be further 
explored through larger multicenter studies, encompass-
ing countries from various hemisphere, to better pre-
dict the ARIs epidemiology and promptly inform public 
health entities.
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