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Abstract 

Background: The purpose of this study was to explore the impact of extreme precipitation on the risk of outpatient 
visits for depression and to further explore its associated disease burden and vulnerable population.

Methods: A quasi-Poisson generalized linear regression model combined with distributed lag non-linear model 
(DLNM) was used to investigate the exposure-lag-response relationship between extreme precipitation (≥95th per-
centile) and depression outpatient visits from 2017 to 2019 in Suzhou city, Anhui Province, China.

Results: Extreme precipitation was positively associated with the outpatient visits for depression. The effects of 
extreme precipitation on depression firstly appeared at lag4 [relative risk (RR): 1.047, 95% confidence interval (CI): 
1.005–1.091] and lasted until lag7 (RR = 1.047, 95% CI: 1.009–1.087). Females, patients aged ≥65 years and patients 
with multiple outpatient visits appeared to be more sensitive to extreme precipitation. The attributable fraction (AF) 
and numbers (AN) of extreme precipitation on outpatient visits for depression were 5.00% (95% CI: 1.02–8.82%) and 
1318.25, respectively.

Conclusions: Our findings suggested that extreme precipitation may increase the risk of outpatient visits for depres-
sion. Further studies on the burden of depression found that females, aged ≥65 years, and patients with multiple visits 
were priority targets for future warnings. Active intervention measures against extreme precipitation events should be 
taken to reduce the risk of depression outpatient visits.

Keywords: Depression, Extreme precipitation, Time-series analysis, Disease burden

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Depression is a common psychiatric disorder worldwide, 
characterized by sustained grief and a lack of interest 
or pleasure in activities that were previously beneficial 
or pleasurable [1]. As of 2019, approximately 280 mil-
lion people worldwide are suffering from depression 
[2]. Depression has become the leading cause of disabil-
ity worldwide and is a major contributor to the global 

burden of disease [3]. Therefore, it is of great importance 
to identify depression and the associated risk factors.

As is known to all, the risks for depression are both 
genetically and environmentally determined [4]. The 
risk of depression is partly mediated by genetic factors, 
accounting for less than 40% [5]. This suggests that envi-
ronmental factors play an important role in the onset 
and development of depression. Some epidemiological 
evidence has shown that meteorological factors are asso-
ciated with mental illness [6]. Scholars have studied the 
effects of meteorological factors such as sunshine, rain-
fall, temperature and pressure on the occurrence and 
admission of depression [7–9]. In particular, with the 
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advancement of climate change, extreme weather events 
have further increased, and the impact of extreme weather 
events on mental diseases (such as depression, schizo-
phrenia, bipolar disorder, etc.) has begun to be paid more 
attention [10]. Floods and rainstorms are gradually taken 
into account whether they are associated with depression 
[11, 12]. However, studies had found that the relationship 
between precipitation and depression were inconsistent. 
Some studies reported that precipitation can increase the 
risk of depression [7] or that it was a protective factor for 
depression [9]. While others discovered that there were no 
statistical significance effects between precipitation and 
depression [13–17]. Furthermore, no studies have investi-
gated the impact of extreme precipitation on depression.

Considering the current state of research on depres-
sion, our research has three purposes: First, to explore 
the relationship between extreme precipitation and out-
patient visits for depression. The second is to conduct 
subgroup analysis according to gender, age and visit types 
(first visit, multiple visits) to identify susceptible groups. 
The third is to assess the attributable burden of outpa-
tient visits for depression due to extreme precipitation.

Methods
Study area
Suzhou is located in the northern Anhui Province, in the 
Yangtze River Delta and is known as the northern gate of 

Anhui Province. It lies between 116°09′-118°10′ east lon-
gitude and 33°18′-34°38′ north latitude, with a total area 
of 9939  km2. In 2020, Suzhou has a permanent population 
of 5,324,476 people. It’s a warm temperate semi-humid 
monsoon climate zone, and the main characteristics of 
Suzhou are mild climate, four distinct seasons, sufficient 
sunshine and moderate rainfall. Figure  1 presented the 
geographical location information of Suzhou.

Data collection
In this study, daily depression cases from January 1, 2017, 
to December 31, 2019, were obtained from Suzhou Sec-
ond People’s Hospital (Suzhou Mental Health Center), 
whose diagnosis and treatment of depression have a good 
credibility. The diagnosis of depression was based on 
the International Classification of Diseases, 10th edition 
(ICD-10 code: F32-F33). Case information includes gen-
der, age, outpatient visits date, residential address, and 
visit types. Patients whose residential addresses were not 
in Suzhou were excluded.

Meteorological data, including daily mean tempera-
ture, rainfall, relative humidity, as well as sunshine dura-
tion, were obtained from China Meteorological Data 
Sharing Service System (http:// data. cma. cn/). Daily air 
pollution data including particulate matter with aero-
dynamic diameter less than 2.5 μm  (PM2.5), nitrogen 
dioxide  (NO2) and sulfur dioxide  (SO2) were retrieved 

Fig. 1 The geographical information of Suzhou, China

http://data.cma.cn/
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from China National Environmental Monitoring Centre 
(http:// www. cnemc. cn/).

So far, there is no unified description of the concept of 
extreme precipitation. In view of the regional and sea-
sonal differences of precipitation distribution, extreme 
precipitation was defined by using the percentile method, 
which was also the method applied by many scholars [18, 
19]. By using the 95th percentile as the cutoff points, we 
divided precipitation into three categorical variables, 
namely no precipitation (equal to 0 mm), moderate pre-
cipitation (> 0 mm and < 95th percentile) and extreme 
precipitation (≥95th percentile) [20].

Statistical analysis
Previous studies have shown that the DLNM can better 
evaluate the nonlinear and delayed effects of environ-
mental exposure on health outcomes [21]. Therefore, we 
performed a quasi-Poisson generalized linear regression 
model combined with DLNM to quantitatively access 
the impact of extreme precipitation on outpatient visits 
for depression. Potential confounding factors includ-
ing long-term trends and seasonality, weekdays (DOW), 
public holiday (Holiday), daily mean temperature (MT), 
relative humidity (RH), and sunshine duration (SD) were 
included in the model. The model was shown as follows:

In the formula, t represented the observation time 
(day); μt was the expected number of depression outpa-
tient visits on day t; ∝ meant the intercept of the model; 
β was the cross-basis matrix coefficient produced by 
DLNM; EPt, l referred to the extreme precipitation on day 
t; l was the number of lag days. In our study, extreme pre-
cipitation and lagged effects were comprised using a “nat-
ural cubic spline-natural cubic spline” method [22], and 
the degree of freedom (df) for exposure and lag dimen-
sions are set to 1 and 4, respectively [23]. The ns() repre-
sented the natural cubic splines. Ns with 7 df per year was 
used to control long-term trend and seasonality. And ns 
with 3 df were used to accommodate the delayed effects 
of MT (lag 0–14), RH (lag 0–14) and SD (lag 0–14) [20]. 
Holiday and DOW were also controlled in the model as 
binary and categorical variables, respectively. The effect 
estimates were calculated as extreme precipitation rela-
tive to no precipitation.

According to the minimum Akaike Information Crite-
rion (AIC), we selected 14 days as the maximum lag days 
to capture the effect of extreme precipitation (Table S1). 
Furthermore, subgroup analysis was performed to iden-
tify the susceptible population of depression caused by 

Yt ∼ quasi − Poisson (µt)

Log (µt) =∝ +βEPt,l , 4 + ns(MT , 3)+ ns(RH , 3)

+ ns(SD, 3)+ ns(Time, 7)+ ηDOWt + γHolidayt

extreme precipitation based on gender (male, female), 
age (≤18 years, 19–39 years, 40–64 years and ≥ 65 years) 
and visit types (first visit, multiple visits). Those with two 
or more outpatient visits were considered as multiple vis-
its. The statistical significance of the differences between 
subgroups was identified by calculating the 95% confi-
dence interval (CI) of the formula [23]: 

Q̂1 − Q̂2 ± 1.96 ˆSE1
2

+ ˆSE2
2

 , Where Q̂1 and 

Q̂2 were the estimates for the two groups, and ˆSE1 and 
ˆSE2 were their respective standard errors [24].
Attributable risk can better reveal disease burden of 

depression caused by exposure to extreme precipitation. 
In our study, we used the following formulae to calculate 
AF and AN, which can assess the burden of depression 
caused by extreme precipitation [23].

In the formulae,  Nt meant the number of outpatient 
visits for depression on day t. AF represented the ratio 
of the number of depression cases attributed to extreme 
precipitation to the number of depression outpatient 
visits.

The “splines” and “dlnm” packages were used in R soft-
ware (version 4.1.2) to perform all statistical analysis. 
Two-sided P values less than 0.05 were considered statis-
tically significant.

Sensitivity analysis
In this study, four sensitivity analyses were performed 
to test the robustness of the results: (1) changing the df 
for MT (3–6), RH (3–6) and SD (3–6); (2) varying the 
df (5–8) for time to adjust for long-term trend and sea-
sonality; (3) replacing the P95 cut off value with different 
percentiles (P90, P92.5, P97.5 and P99) to check the sta-
bility of the model. (4) Air pollutants such as  PM2.5,  NO2, 
and  SO2 have been shown to be associated with the risk 
of outpatient visits for depression [25], we compared the 
results before and after adding air pollutants to the model 
to test its robustness.

Results
Descriptive analysis
There were 26,343 depression cases from Suzhou during 
2017–2019, with the daily average of 24.1 cases. Table 1 
reflected the summary statistics of depression outpa-
tient visits and environmental factors in 2017–2019. In 
terms of gender, there were more males than females, 
with male-to-female ratio being 1.5:1 (15,844:10499). In 
the age group, the highest proportion of cases were in the 
40–64 years age group (accounting for 41.3%), 8.3% in the 
≤18 years age group, 30.7% in the 19–39 years age group 

AFt = RRt − 1/RRt

ANt = AFt ∗ Nt

http://www.cnemc.cn/
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and 19.6% in the ≥65 years age group. The average values 
of daily rainfall, mean temperature, relative humidity and 
sunshine duration were 2.4 mm, 15.8 °C, 73.6% and 5.8 h, 
respectively. The daily average concentrations of air pol-
lutants were 58.0 μg/m3 for  PM2.5, 34.5 μg/m3 for  NO2 
and 13.6 μg/m3 for  SO2, respectively. The maximum daily 
rainfall was 232.6 mm during the study period.

The time-series distribution of daily depression outpa-
tient visits and weather factors in Suzhou from 2017 to 
2019 were shown in Fig. 2. There was a distinct seasonal-
ity in the distribution of temperature, relative humidity, 
rainfall and sunshine duration.

Association between extreme precipitation and outpatient 
visits for depression
Figure  3 showed the RR and 95% CI of extreme precipi-
tation on total and subgroups (gender/age/visit type) out-
patient visits for depression in diverse lag days. We found 
that the association between extreme precipitation and 
outpatient visits for depression was significant from lag4 
(RR = 1.047, 95% CI: 1.005–1.091) to lag7 (RR = 1.047, 
95% CI: 1.009–1.087), with the strong effect occurred at 
lag5 (RR = 1.052, 95% CI: 1.010–1.096). In gender sub-
group analysis, we observed that significant effects on 
female rather than male. For female, extreme precipitation 
effect on outpatient visits for depression occurred at lag4 

(RR = 1.059, 95% CI: 1.002–1.118), lag5 (RR = 1.070, 95% 
CI: 1.013–1.130), lag6 (RR = 1.076, 95% CI: 1.022–1.133), 
lag7 (RR = 1.076, 95% CI: 1.023–1.131), lag8 (RR = 1.070, 
95% CI: 1.016–1.127) and lag9 (RR = 1.060, 95% CI: 1.004–
1.120). In term of age and visit type group, we found that 
people older than 65 years and multiple visits cases were 
more sensitive to extreme precipitation (Table S2).

Attributable risk of extreme precipitation for depression
Table S3 displayed the single-day and cumulative lag 
effects of extreme precipitation on depression outpatient 
visits at various lag days in Suzhou, China. Based on sev-
eral published studies [20, 23], we chose the maximum sin-
gle-day lag effect [lag5, 1.052(1.010–1.096)] to calculate the 
corresponding AF and AN in our study. Table 2 displayed 
the AF and AN of extreme precipitation on outpatient vis-
its for depression. The AF and AN of extreme precipitation 
on outpatient visit for depression were 5% and 1318.25, 
respectively. In subgroups analysis, we found that the AF 
and AN of female cases were 6.58% (95% CI: 1.33–11.56%) 
and 691.29, respectively, which were both higher than male 
cases [AF: 3.94% (95% CI: − 0.43–8.13%); AN: 624.83)]. 
The results of age stratification indicated that cases aged 
≥65 years group [AF: 9.37% (95% CI: 1.11–16.94%); AN: 
484.93] were more susceptible than all other age groups. 
In term of visit types, cases with multiple visits had a high 

Table 1 Descriptive statistics of depression outpatient visits and environmental factors in Suzhou, 2017–2019

SD Standard deviation, P25 P75 the 25th percentile, the 75th percentile, Min Minimum, Max Maximum

Variables Total Mean ± SD Min P25 Median P75 Max

Depression cases 26,343 24.1 ± 8.2 4 19 25 30 40

Gender

 Female 10,499 9.6 ± 4.2 0 7 10 13 21

 Male 15,844 14.5 ± 5.5 4 10 12 20 21

Age

  ≤ 18 years 2198 2.0 ± 2.4 0 0 1 3 8

 19–39 years 8083 7.4 ± 2.6 0 6 7 9 15

 40–64 years 10,889 9.9 ± 2.5 2 9 10 12 17

  ≥ 65 years 5173 4.7 ± 3.3 0 1 4 8 9

Visit types

 First visit 12,567 11.5 ± 5.5 1 7 9 17 18

 Multiple visits 13,776 12.6 ± 4.2 2 10 13 16 24

Weather conditions

 Rainfall (mm) / 2.4 ± 10.7 0.0 0.0 0.0 0.0 232.6

Mean temperature (°C) / 15.8 ± 9.9 −6.3 6.8 16.3 24.7 34.4

Relative humidity (%) / 73.6 ± 13.9 27.0 64.0 75.0 84.0 99.0

Sunshine duration (h) / 5.8 ± 4.3 0.0 0.8 7.1 9.4 12.8

Air pollutants

  PM2.5 (μg/m3) / 58.0 ± 36.7 0.0 32.0 49.0 75.0 250.0

  NO2 (μg/m3) / 34.5 ± 17.9 5.0 22.0 31.0 45.0 121.0

  SSO2 (μg/m3) / 13.6 ± 8.1 3.0 8.0 12.0 17.0 70.0
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disease burden [AF: 5.04% (95% CI: 1.01–8.91%); AN: 
694.54]. Those indicated that females, aged ≥65 years and 
with multiple visits had a higher disease burden due to 
extreme precipitation (Fig. S1).

Sensitivity analysis
When altering the df for time (5–8), mean temperature 
(3–6), relative humidity (3–6) and sunlight duration 
(3–6), we found that there were no significant differ-
ence on the effects of extreme precipitation on outpa-
tient visits for depression (Fig. S2-S5). Moreover, there 
was little change before and after adding the pollutants 
 (PM2.5,  NO2 and  SO2) to the model, which indicated 
that our results are robust (Fig. S6). At last, by changing 
the cut-off values of extreme precipitation from P95 to 
P90, P92.5, P97.5 and P99, we discovered no significant 
changes in the effect estimates values (Fig. S7).

Discussion
In recent years, depression has been increasingly recog-
nized as a major health problem, and climate change may 
exacerbate the burden of depression [26]. In this study, 

we examined the impact of extreme precipitation on out-
patient visits for depression. And the results showed that 
extreme precipitation may increase the risk of depres-
sion outpatient visits, with significant effects lasting from 
lag4 to lag7. We further assessed the burden of depres-
sion caused by extreme precipitation and found that the 
AF and AN were 5.00%(95% CI: 1.02–8.82%)and 1318.25, 
respectively. Besides, female, cases aged ≥65 years and 
patients with multiple visits appeared to be more suscep-
tible to extreme precipitation.

There is a clear lack in studies on depression and pre-
cipitation, and the results varied across different stud-
ies. As early as 1996, studies by Molin et  al. showed 
that rainfall was not associated with the onset of winter 
depression [13]. Subsequently, studies in the Nether-
lands, Canada, North America and Sweden also showed 
that there was no relationship between rainfall and the 
occurrence of depression [14–17]. In our study, we sug-
gested that extreme precipitation was associated with 
increasing outpatient visits for depression, which was 
similar with the results of Hare et  al. [7] and Abbasi 
et  al. [27]. But Hare used the linear regression mod-
els to estimate the effect of climate on depression, and 

Fig. 2 The time-series distribution of daily depression outpatient visits and weather factors in Suzhou, 2017–2019. TEMP Temperature; RH Relative 
humidity; RF Rainfalls; SD Sunshine duration
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annual cumulative rainfall index only reflected the long-
term impact of rainfall on the occurrence of depression 
rather than daily effect [7]. In Abbasi’s study, the author 
took the rainfall regime and the behavior of rainy seasons 
into more account rather than precipitation itself [27]. In 

2014, a cohort study of Spanish college graduates using 
cox regression models to assess the relationship between 
climatic factors and depression, and found that men who 
lived in rainy areas had a lower risk of developing depres-
sion [9]. These results were inconsistent with the conclu-
sion of our study, which may be due to the fact that our 
study focused on the impact of extreme precipitation. In 
addition, different study areas, study designs and statis-
tical methods may also lead to different conclusions [28, 
29]. In view of the inadequacy and inconsistency of previ-
ous studies, further research is necessary to explore the 
association between extreme precipitation and the out-
patient visits for depression.

Previous studies have explored the biological mecha-
nism between environmental exposure (such as air pol-
lution, noise) and depression [30, 31], and provided 
epidemiological evidence [32, 33], but the biological 
mechanism of extreme precipitation increasing the risk 
of depression outpatients is still unclear. Our findings 
suggested that extreme precipitation was associated with 
increased risk of the outpatient visits for depression. 
The possible explanation is as follows. Firstly, previous 

Fig. 3 The relative risk (RR) and 95% confidence interval (95% CI) of extreme precipitation on total and subgroups (gender/age/visit type) 
outpatient visits for depression in diverse lag days

Table 2 Attributable fractions (95%CI) and number of 
depression outpatient visits stratified by gender, age and visit 
types in Suzhou, 2017–2019

AF Attribution fraction, AN atTribution number, CI Confidence interval

Group AN AF 95% CI

Total 1318.25 5.00% 1.02% 8.82%

Male 624.83 3.94% −0.43% 8.13%

Female 691.29 6.58% 1.33% 11.56%

0–18 years 135.31 6.15% −9.58% 19.63%

19–39 years 359.88 4.45% 0.12% 8.59%

40–64 years 333.75 3.06% −0.09% 6.12%

≥ 65 years 484.93 9.37% 1.11% 16.94%

First visit 618.12 4.92% −0.66% 10.18%

Multiple visits 694.54 5.04% 1.01% 8.91%
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studies had found that environment stresses, such as cold 
or heat stress, which were caused by extreme weather 
events, were considered as risk factors for mental ill-
ness [34–36]. Secondly, extreme precipitation is accom-
panied by changes in sunlight and temperature. These 
changes may cause some mental diseases, which may be 
associated with the fluctuation of the serotonergic func-
tion [37]. A study has shown that the serotonergic varied 
inversely with daily temperature [38]. Furthermore, living 
in a warmer and sunnier climate may encourage people 
to go out and exercise more, which had been shown to 
be a protective factor for depression [39]. Last but not 
least, studies have reported the relationship between 
heat waves and mental disorders (such as depression 
and post-traumatic stress disorder), and indicated that 
it may increase the incidence of depression [26, 40, 41]. 
It is well known that heat wave is one of the reasons for 
precipitation, which explains our conclusion to some 
extent. Although some studies have shown the impact 
of extreme weather events on mental diseases [10, 42], 
further studies are needed to reveal the mechanism of 
extreme precipitation on depression.

In this subgroup analysis, we observed that females 
were more susceptible to the effect of extreme precipita-
tion on depression than males, with higher rate of AF and 
AN. The possible reason was that, different from males, 
females, who possibly have strong stress responsiveness, 
often bear multiple care responsibilities for their chil-
dren, spouses and parents, and have experienced more 
stressful life events [43]. These stressors may become risk 
factors for depression and eventually lead to depression 
[44]. And females who experienced pregnancy, breast-
feeding, menstrual cycle and the menopausal transition 
were more likely to be affected by the outside environ-
ment and had relatively higher rates of depression [45]. 
Besides, people with multiple outpatient visits were more 
vulnerable to extreme precipitation than those with first 
outpatient visits. Some scholars had given the possible 
reason that most patients with depression have seasonal 
characteristics, and weather factors are one of the pre-
disposing factors of recurrent depression [46]. Moreo-
ver, it indicated that extreme precipitation may have 
an increased effect for depression in the patients aged 
≥19 years. Among them, people over 65 years were more 
vulnerable to extreme precipitation. This may be because 
with the increase of age, the physiological and psycholog-
ical functions of the elderly are gradually getting weaken, 
especially the sensory organs and nervous systems 
involved in psychological activities may undergo degen-
erative changes. The physical resistance of the elderly is 
low, which is accompanied by a decrease in their ability 
to adapt to changes in the external environment [20]. 

Moreover, the elderly suffer from more chronic diseases, 
and the distress of these diseases may cause depression 
in the elderly. Therefore, the elderly were more sensitive 
to rainfall, which was consistent with previous research 
[47].

This study has several advantages. Firstly, to our knowl-
edge, this maybe the first study to explore the association 
between extreme precipitation and depression by using 
a time series design. We comprehensively and deeply 
analyzed the RR, AF and AN with patients of depression 
caused by extreme precipitation, which provided impor-
tant reference value for the prevention of depression in 
the region. Secondly, previous studies had reported that 
air pollutants may increase the risk of depression out-
patient visits. Therefore, we added air pollutants into 
the model for sensitivity analysis to verify the robust-
ness of the model, and finally showed that our results 
were robust. Thirdly, we used the DLNM to analyze the 
lag effect of extreme precipitation on depression, and 
through subgroup analysis, we found that the sensi-
tive population of depression, suggesting that we should 
attach importance to susceptible population and protect 
them.

Nevertheless, some limitations should be taken into 
consideration in our study. Firstly, since we only selected 
a single city as the study area, this study may not be 
extended to other areas, especially those with different 
climates. Secondly, our meteorological data are derived 
from meteorological stations and therefore cannot accu-
rately estimate the actual exposure of individuals. Thirdly, 
in this study, we only examined the short-term effects of 
extreme precipitation on depression, and future studies 
should explore this relationship in a longer time scale. 
Finally, in view of the differences in spatial distribu-
tion and obvious seasonality, the distribution of rainfall 
is abnormal and uneven. Therefore, the cut-off value of 
rainfall is not easy to obtain. In the future, more accurate 
and complex models may need to be established to simu-
late the exposure-response relationship.

Conclusions
Our study found the adverse effect of extreme precipita-
tion on depression outpatient visits from 2017 to 2019 
in Suzhou, Anhui Province, China. Female, people aged 
≥65 years and multiple outpatient visits for depression 
are more vulnerable to extreme precipitation. This study 
may enlighten relevant government departments to 
strengthen public health policy formulation and ration-
ally allocate health resources. At the same time, more 
studies are needed to further confirm our results in other 
regions with the same climate type.
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