Skip to main content

Table 2 Relative model performance within four LCPs; period, repeats, order, and timing

From: Exploring the potential and limitations of deep learning and explainable AI for longitudinal life course analysis

 

LR

XGBoost

MLSTM-FCN

InceptionTime

ResNet

LSTMAttention

 

F1

PRC

AUC

Brier

F1

PRC

AUC

Brier

F1

PRC

AUC

Brier

F1

PRC

AUC

Brier

F1

PRC

AUC

Brier

F1

PRC

AUC

Brier

Period

1

100.00

100.00

100.00

0.07

99.92

100.00

100.00

0.03

100.00

100.00

100.00

4.10

99.92

99.99

100.00

0.25

99.89

99.94

99.95

0.12

100.00

100.00

100.00

1.05

2

99.82

99.96

100.00

0.25

99.93

100.00

100.00

0.02

99.67

99.93

100.00

0.03

99.71

99.84

99.92

0.06

99.82

99.95

100.00

0.09

100.00

100.00

100.00

0.01

3

81.09

89.26

99.69

0.50

97.15

99.22

99.97

0.12

91.91

95.47

99.88

1.17

95.96

97.65

99.97

0.21

98.61

99.73

99.99

0.06

98.47

99.89

100.00

0.06

Repeat

1

50.42

51.52

98.23

0.92

99.45

99.98

100.00

0.04

99.82

99.99

100.00

0.06

99.33

99.84

99.99

0.06

99.51

99.95

100.00

0.05

99.94

100.00

100.00

0.01

2

39.38

30.78

95.91

1.08

98.28

99.68

100.00

0.05

97.84

98.67

99.95

0.14

96.96

97.06

99.92

1.37

97.88

98.45

99.39

0.10

96.37

97.15

99.97

0.14

3

42.29

36.87

97.53

1.40

90.07

95.81

99.92

0.33

99.67

99.87

99.99

0.05

96.88

98.68

99.97

3.93

98.28

99.38

99.99

0.10

100.00

100.00

100.00

0.02

Order

1

57.48

44.93

95.67

4.20

97.70

98.20

99.93

0.37

99.04

99.39

99.63

2.64

99.80

99.99

100.00

2.48

99.76

99.95

100.00

0.07

98.89

99.80

99.99

0.20

2

34.57

24.72

95.94

1.77

86.39

90.63

99.79

0.47

95.48

97.50

99.44

0.20

98.82

99.84

99.99

0.05

97.46

98.97

99.82

0.16

99.37

99.96

100.00

0.04

3

27.24

17.12

93.75

1.70

91.81

94.34

99.88

0.35

98.60

98.89

99.37

0.08

99.58

99.98

100.00

0.02

99.35

99.79

99.92

0.03

99.86

99.90

99.99

0.01

Timing

1

36.49

26.59

93.47

2.67

99.73

99.99

100.00

0.06

99.22

99.95

100.00

0.83

99.89

99.99

100.00

0.07

100.00

100.00

100.00

0.43

100.00

100.00

100.00

0.01

2

28.26

21.15

95.76

0.99

95.03

98.71

99.98

0.16

97.01

99.40

99.99

0.06

95.77

98.68

99.95

0.42

97.98

99.70

99.99

0.08

77.01

75.01

99.47

1.81

3

54.40

44.87

98.17

1.83

93.81

98.15

99.92

0.31

97.86

99.21

99.84

0.16

99.24

99.80

99.97

0.04

98.97

99.67

99.99

0.06

65.41

59.82

97.54

25.05

  1. Each row gives information about a rule including the LCP it falls into, an identifying number, the proportion of the resulting outcome that is positive and its definition. If the rule is met, then the outcome is positive. For each model the F1, AUROC and AUPRC values as percentages are provided and the highest performing model for each dataset is highlighted in bold font. 10 percent noise in the data. LR = logistic regression. Note F1 scores depend on the chosen threshold which in this case was selected to maximise the F1 score. All other metrics are independent of the threshold